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An integral representation for the reversible Randles–Sevcik function is developed using
some relations from the theory of special functions. This integral formulation is employed
to generate a two-parameter family of analytical expressions for computing the reversible
Randles–Sevcik function correct to a specified number of decimal digits. This work extends
the practical application of a novel series expression for the Randles–Sevcik function previ-
ously developed by Oldham.
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1. Introduction

The reversible Randles–Sevcik functionπ1/2χ(x) arises in electrochemistry, where
it characterizes the dependence of electric current on cell voltage under certain electrol-
ysis conditions [1–3]. As illustrated by the table in Oldham [4] and the plot in [5],
the graph ofπ1/2χ(x) over−∞ < x < ∞ is a positive, asymmetrical curve with a
single, relatively steep peak nearx = 1.1. For positive and negative values ofx, the
Randles–Sevcik function exhibits the notably different asymptotic properties specified
by π1/2χ(x) ∼ (πx)−1/2, x →∞, andπ1/2χ(x) ∼ ex, x →−∞. Furthermore, poles
of the Randles–Sevcik in the complex plane restrict the convergence of its Maclaurin
series to the finite interval−π < x < π . The combination of all of these factors make it
difficult in practice to obtain analytical expressions forπ1/2χ(x) that are valid over the
complete domain(−∞,∞) of the function.

For negativex, Reinmuth [6] showed that the Randles–Sevcik function can be
expressed as the convergent series

π1/2χ(x) =
∞∑
n=1

(−1)n+1n1/2enx, x < 0. (1.1)
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For negativex bounded away from zero, the partial sums of (1.1) provide an effective
way to compute the Randles–Sevcik function. However, this latter interval does not
include the chemically interesting region containing the peak ofπ1/2χ(x).

In an effort to overcome these problems, Oldham [4,7] used the fractional calculus
to show that the Randles–Sevcik function can be expressed as the Weyl semiderivative
of the functiong(x) = 1/(1+ e−x) = 1/2+ 1/2 tanh(x/2):

π1/2χ(x) = d1/2g(x)

dx1/2
= d

dx

(
d−1/2g(x)

dx1/2

)
= d

dx

(
π−1/2

∫ x

−∞
(x − y)−1/2g(y) dy

)
.

Using this approach and the partial fraction representation forg(x), Oldham was able
to analytically continue the Reinmuth series representation (1.1) to the whole domain of
the Randles–Sevcik function through the novel series reformulation

π1/2χ(x) =
(
π

2

)1/2 ∞∑
n=1

γn(x), (1.2)

whereγn(x) = β−3
n (βn−x)1/2(βn+2x), βn = (x2+b2

n)
1/2, bn = (2n−1)π . In practice

the convergence of Oldham’s series (1.2) is unacceptably slow. For example, ifx = 0
and we require an absolute error less than 0.001, then we must sum aboutN = 50,660
terms.

Oldham recognized this problem and developed a method to accelerate the rate of
convergence by essentially adding and subtracting a known convergent series, whose
nth term mimics the Maclaurin series behavior ofγn(x) in (1.2). For the specific details
see [4,7] and the extensions in [5]. Although these latter accelerated series developments
are of much greater practical use than (1.2) in the neighborhood ofx = 0, their rate of
convergence dramatically slows asx moves away from the origin. In view of these
observations it seems worthwhile to see if a more uniform method can be developed
for determining analytical approximations toπ1/2χ(x) that are of use over the whole
domain(−∞,∞) of the Randles–Sevcik function.

The main purpose of this paper is to develop a two-parameter family of analytical
approximations of the form

π1/2χ(x) ≈ SN(x)+ EN,K(x), −∞ < x <∞, (1.3)

whereN � 1 andK � 0 are integer parameters that control the accuracy of the approx-
imation;

SN(x) =
(
π

2

)1/2 N∑
n=1

γn(x), (1.4)

is theN th partial sum of (1.2);EN,K(x) is an error correction term given by

EN,K(x) =
K∑
k=0

dk
(
x2 + 4N2π2

)−k−1/4
sin

[(
2k + 1

2

)
θN + π

4

]
, (1.5)
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Table 1
Coefficients (1.6) required for the error correction
summation (1.5):dk = ekπ

2k−1/2, k = 0, 1, . . . , 7.

k ek k ek

0 1 4
54483

32768

1 −1

8
5 −10728445

786432

2
49

384
6

10508149633

62914560

3 − 341

1024
7 −95840228925

33554432

whereθN = tan−1[x/(2Nπ)], the coefficientsdk being defined in terms of the Bernoulli
numbers and the gamma function by

dk = 2
(
1− 22k−1)B2kπ

2k−1�(2k + 1/2)

(2k)! = ekπ
2k−1/2. (1.6)

The first eight of these coefficients are listed in table 1.
For our introductory purposes here we merely illustrate the above results for the

simplest and least accurate case corresponding toN = 1 andK = 0 in the family of
approximations (1.3). In particular,

π1/2χ(x) ≈ S1(x)+ E1,0(x) (1.7)

where the first partial sum of (1.2) is

S1(x) =
(
π

2

)1/2(
x2 + π2

)−3/2
(√

x2 + π2− x
)1/2(√

x2 + π2+ 2x
)

and the error correction term

E1,0(x) = π−1/2(x2 + 4π2)−1/4
sin

[
1

2
tan−1

(
x

2π

)
+ π

4

]
.

In figure 1 we plot the error curveπ1/2χ(x)− [S1(x)+E1,0(x)] for the simple approxi-
mation (1.7).

As can be seen from this graph, the error is fairly small, even for this lowest order
member of the family of approximations (1.3). As we shall demonstrate later, much
more accurate approximations result if we increase the value ofN andK in (1.3). For
example, the magnitude of the error on(−∞,∞) is less than 6.4 · 10−5 if N = 2
andK = 1, and less than 2.5 · 10−16 whenN = 8 andK = 7. The error curve
π1/2χ(x)− [S8(x)+ E8,7(x)] for the latter case is shown in figure 2.

As an implementation aid we will later provide a convenient contour plot for se-
lecting values ofN andK sufficient for (1.3) to achieve a specified number of decimal
digits of accuracy over(−∞,∞).
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Figure 1. Error curveπ1/2χ(x)− [S1(x)+ E1,0(x)] for approximation (1.3),N = 1, K = 0.

Figure 2. Error curveπ1/2χ(x)− [S8(x)+ E8,7(x)] for approximation (1.3),N = 8, K = 7.

This paper is organized as follows. Sections 2 and 3 outline the mathematical
derivation of the central approximation scheme specified by equations (1.3)–(1.6). Sec-
tion 4 is devoted to the application of approximation (1.3) and presents a method for
selecting appropriate values ofN andK for computingπ1/2χ(x) to a specified number
of decimal digits of accuracy. Finally, section 5 gives some concluding remarks and
observations.
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2. An integral form for the remainder

To develop a family of analytical approximations for the Randles–Sevcik function
we employ as our principal mathematical tool the integral representation

π1/2χ(x) =
∫ ∞

0
t1/2 cschπt sin

(
xt + π

4

)
dt, (2.1)

whose technical derivation is outlined in the appendix to this paper. Equation (2.1) is the
basis for all of the following analytical work.

We begin with the hyperbolic cosecant identity

cschπt = 2
N∑
k=1

e−(2k−1)πt + e−2N πt cschπt (2.2)

that derives from the geometric series with remainder term, generated from the defining
exponential form of cschπt . Substituting the right-hand side of (2.2) into equation (2.1),
we find with the aid of a table of Fourier-sine and cosine transforms [9] that

π1/2χ(x) = π1/2
N∑
n=1

(
x2 + bn

)−3/4
sin

(
3

2
αn + π

4

)
+ RN(x), (2.3)

where the angleαn = tan−1(x/bn) and the remainder

RN(x) =
∫ ∞

0
t1/2e−2Nπt cschπt sin

(
xt + π

4

)
dt. (2.4)

A straight-forward, but tedious calculation shows that the summation in (2.3) is equal to
the Oldham partial sumSN(x) defined by (1.4), and, consequently, that

π1/2χ(x) = SN(x)+ RN(x). (2.5)

Equation (2.5) shows that if we only sum the firstN terms in Oldham’s series (1.2), then
we commit a truncation error whose magnitude is|RN(x)|. Using (2.4), (2.5) and the
basic inequality cschπt < (πt)−1 we obtain the uniform upper bound

∣∣π1/2χ(x) − SN(x)
∣∣= ∣∣RN(x)

∣∣ �
∫ ∞

0
t−1/2e−2Nπt dt

= π−1(2N)−1/2, −∞ < x <∞.

This upper bound explicitly shows that the partial sums of (1.2) do not by themselves
provide a practical method for computing the Randles–Sevcik function, since to guaran-
tee an absolute errorε 
 1, we must chooseN � 2−1π−2ε−2 � 1, e.g., forε = 0.001
this givesN � 50,661.

The central idea in deriving a practical approximation to the Randles–Sevcik func-
tion from the decomposition (2.5) depends on the fact that we can accurately estimate
the integral in equation (2.4) for the remainderRN(x). This is done in the next section
and is the key to obtaining the family of approximations (1.3).
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3. Estimating the remainder

To estimate the remainderRN(x) in (2.5) we first observe that the integrand in (2.4)
is bounded in magnitude by the function

fN(t) =
√
te−2Nπt cschπt = 2

√
te−(2N+1)πt

[
1+ e−2πt

1− e−2πt

]
≈ 2
√
te−(2N+1)πt

with fN(t) → ∞ as t → 0+ andfN(1) ≈ 2e−(2N+1)π . In particular,f1(1) ≈ 0.16 ·
10−3, f2(1) ≈ 0.30 · 10−6 andf3(1) ≈ 0.56 · 10−9. Consequently, asN increases the
major contributing portion of the integrand in (2.4) occurs on the interval 0< t < 1. On
this latter interval it is known that the hyperbolic cosecant admits a series expansion [8]
that we express in the form

cschπt = CK(t)+
∞∑

k=K+1

akπ
2k−1t2k−1, 0 < |t| < 1, (3.1)

where the integerK � 0,

ak = 2
(
1− 22k−1

) B2k

(2k)!
and the partial sum

CK(t) =
K∑
k=0

akπ
2k−1t2k−1 = 1

πt
− 1

6
πt + 7

360
π3t3 − · · · + aKπ

2K−1t2K−1. (3.2)

Substituting (3.1) into (2.4) yields the identity

RN(x) = EN,K(x)+ δN,k(x), (3.3)

or in view of (2.5), the representation

π1/2χ(x) = SN(x)+ EN,K(x)+ δN,K(x), (3.4)

where

δN,K(x)=
∫ ∞

0
t1/2e−2Nπt

[
cschπt − CK(t)

]
sin

(
xt + π

4

)
dt, (3.5)

EN,K(x)=
∫ ∞

0
t1/2e−2NπtCK(t) sin

(
πt + π

4

)
dt

=
K∑
n=0

akπ
2k−1

∫ ∞
0

t2k−1/2e−2Nπt sin

(
xt + π

4

)
dt. (3.6)

Using [9] we find that∫ ∞
0

t2k−1/2e−2Nπt sin

(
xt + π

4

)
dt = �(2k + 1/2)

(x2 + 4N2π2)k+1/4
sin

[(
2k + 1

2

)
θN + π

4

]
,
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where as in section 1,θN = tan−1[x/(2Nπ)]. If this latter integral is substituted
into (3.6) we obtain the form for the error correction termEN,k(x) previously sum-
marized in the introduction by equations (1.5)–(1.6).

We conclude this section by noting that if the termδN,K(x) is neglected in (3.4),
then we obtain the two-parameter family of approximations (1.3). It follows that the
accuracy of (1.3) depends on the magnitude ofδN,K(x) as detailed below.

4. Selecting the accuracy control parameters N and K

In this section we present a method for selecting values for the integersN � 1
andK � 0 so that the basic approximation (1.3) enjoysD-decimal place accuracy on
(−∞,∞):∣∣π1/2χ(x) − [

SN(x)+ EN,K(x)
]∣∣ = ∣∣δN,K(x)

∣∣ � 10−D, −∞ < x <∞.

By (3.5) we have
∣∣δN,K(x)

∣∣ �
∫ ∞

0
t1/2e−2Nπt

∣∣cschπt − CK(t)
∣∣ dt. (4.1)

Using (3.1) it can be verified that∣∣cschπt − CK(t)
∣∣ � |aK+1|π2K+1t2K+1, t > 0.

Substituting the right-hand side of this inequality into the integrand in (4.1) and evaluat-
ing the resulting integral yields the upper bound∣∣π1/2χ(x)− [

SN(x)+ EN,K(x)
]∣∣ � MN,K, −∞ < x <∞, (4.2)

where

MN,K = |aK+1|
√

2

8

�(2k + 5/2)

N2K+5/24Kπ3/2
.

Using the well-known relationship

|B2n|
(2n)! =

2ζ(2n)

(2π)2n

in the definition ofan following (3.1), we may write the above expression forMN,K in
the form

MN,K = �(2k + 5/2)ζ(2k + 2)(1− 2−2K−1)

N2K+5/222K+3/2π2K+7/2
. (4.3)

In view of the uniform bound (4.2), we can obtainD decimal digits of accuracy in
the approximation (1.3) for−∞ < x < ∞ if we choose the integer parametersN � 1
andK � 0 so that

− log10MN,K = D. (4.4)

In figure 3 we plot the contour curves (4.4) forD = 3,4, . . . ,16.
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Figure 3.− log10MN,K = D for D = 3,4, . . . ,16 (top left to right curves).

Using figure 3 it is easy to select among several possible pairsN , K on the contour
of levelD, to insure that (1.3) achievesD decimal places of accuracy over the domain
of π1/2χ(x). For example, ifD = 4 then the second curve from the top left in figure 3
shows that the choicesN = 2, K = 1 are appropriate, whereas ifD = 15 the choices
N = 8, K = 7 are satisfactory. Notice that the predicted maximum absolute error of
10−15 in the latter case is consistent with the actual absolute error 0.25 · 10−15 shown in
figure 2.

5. Concluding remarks

The family of approximations defined by (1.3)–(1.6) give a useful method for com-
putingπ1/2χ(x) on the domain(−∞,∞). Table 1 gives closed forms for the coefficients
dk required in (1.5) for the cases whenK � 7 in (1.3). The contour curves in figure 3
facilitate the selection of the accuracy parametersN andK to insure that (1.3) achieves
D decimal digits of accuracy.

Appendix

One method for deriving the paramount integral representation (2.1) is based on
the theory of special functions. Our starting point is Joncquière’s function [10]

F(z, s) =
∞∑
n=1

zn

ns
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and Joncquière’s relation

F(z, s)+ eisπF

(
1

z
, s

)
= (2π)s

�(s)
eisπ/2ζ

(
1− s,

logz

2π i

)
.

In view of the Reinmuth series representation (1.1) we see that the Randles–Sevcik func-
tion can be expressed in terms of Joncquière’s function through

π1/2χ(x) = −F
(
−ex,−1

2

)
.

This later connection and Joncquière’s relation implies that

π1/2χ(x) − iπ1/2χ(−x) =
√

2

4π
e−iπ/4ζ

(
3

2
,

1

2
− ix

2π

)
.

Taking the real part of both sides of this last equation and employing the integral
representation for the generalized zeta (Hurwitz) function given in [10] to represent
ζ(3/2,1/2− (ix)/(2π)), we obtain the form forπ1/2χ(x) given by (2.1).
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