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An integral representation for the reversible Randles—Sevcik function is developed using
some relations from the theory of special functions. This integral formulation is employed
to generate a two-parameter family of analytical expressions for computing the reversible
Randles—Sevcik function correct to a specified number of decimal digits. This work extends
the practical application of a novel series expression for the Randles—Sevcik function previ-
ously developed by Oldham.

KEY WORDS: Randles—Sevcik function, series expression, two-parameter

1. Introduction

The reversible Randles—Sevcik functiofx (x) arises in electrochemistry, where
it characterizes the dependence of electric current on cell voltage under certain electrol-
ysis conditions [1-3]. As illustrated by the table in Oldham [4] and the plot in [5],
the graph ofr/2y (x) over —oo < x < oo is a positive, asymmetrical curve with a
single, relatively steep peak near= 1.1. For positive and negative values xafthe
Randles—Sevcik function exhibits the notably different asymptotic properties specified
by 72y (x) ~ (wx)"Y2, x = oo, andn?x (x) ~ €', x — —oo. Furthermore, poles
of the Randles—Sevcik in the complex plane restrict the convergence of its Maclaurin
series to the finite intervalr < x < . The combination of all of these factors make it
difficult in practice to obtain analytical expressions fo?x (x) that are valid over the
complete domairi—oo, oo) of the function.

For negativex, Reinmuth [6] showed that the Randles—Sevcik function can be
expressed as the convergent series

72y (x) = (="M, x <O (1.1)
n=1
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For negativex bounded away from zero, the partial sums of (1.1) provide an effective
way to compute the Randles—Sevcik function. However, this latter interval does not
include the chemically interesting region containing the peak®ty (x).

In an effort to overcome these problems, Oldham [4,7] used the fractional calculus
to show that the Randles—Sevcik function can be expressed as the Weyl semiderivative
of the functiong(x) = 1/(1+e*) = 1/2+ 1/2tannx/2):

d2g(x) d /d2g(x) d/ _ x _

Using this approach and the partial fraction representatiory oy, Oldham was able
to analytically continue the Reinmuth series representation (1.1) to the whole domain of
the Randles—Sevcik function through the novel series reformulation

1/2 oo
72y (x) = (%) ;w), (1.2)

Whereyn(-x) = ﬁ;;g(ﬁn_x)l/z(ﬁn -|—2X), ﬁn = (x2+bs)l/2a b, = (Zn—l)n In praCtice
the convergence of Oldham’s series (1.2) is unacceptably slow. For example; 0
and we require an absolute error less than 0.001, then we must sumM\abke &0, 660
terms.

Oldham recognized this problem and developed a method to accelerate the rate of
convergence by essentially adding and subtracting a known convergent series, whose
nth term mimics the Maclaurin series behaviongtx) in (1.2). For the specific details
see [4,7] and the extensions in [5]. Although these latter accelerated series developments
are of much greater practical use than (1.2) in the neighborhoad=00, their rate of
convergence dramatically slows asmoves away from the origin. In view of these
observations it seems worthwhile to see if a more uniform method can be developed
for determining analytical approximations #0"/2y (x) that are of use over the whole
domain(—oo0, oo) of the Randles—Sevcik function.

The main purpose of this paper is to develop a two-parameter family of analytical
approximations of the form

7V2x(x) ~ Sy(x) + Ey g (x), —00 <x < 00, (1.3)

whereN > 1 andK > 0 are integer parameters that control the accuracy of the approx-
imation;

- 12 N
SN<x>=<5> ;mx), (1.4)

is the Nth partial sum of (1.2)Ey k (x) is an error correction term given by

K
e 1
EN,K(X) = de(xz + 4N27T2) k 1/4Sin|:(2k + §>0N + %:|, (15)
k=0
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Table 1
Coefficients (1.6) required for the error correction
summation (1.5)dy = e;n 212 k=0,1,...,7.

k ex k ex
o 1 . um
32768
1 1 5 10728445
8 786432
5 ﬁ 6 10508149633
384 62914560
3 _ 341 7 95840228925
1024 33554432

wheredy = tanm1[x/(2N )], the coefficientsl, being defined in terms of the Bernoulli
numbers and the gamma function by

r 1/2
dk = 2(1 — 22](71) BZ](]TZkl—(ZI(CZZ)' / ) = €k7'[2k71/2.

The first eight of these coefficients are listed in table 1.

For our introductory purposes here we merely illustrate the above results for the
simplest and least accurate case corresponding to 1 andK = 0 in the family of
approximations (1.3). In particular,

72X (x) &~ S1(x) + E1,0(x) (1.7)
where the first partial sum of (1.2) is
1/2 - 1/2
S1(x) = <%> (x? + 72 3/2(\/x2 + 72— x) <\/x2 + 72+ Zx)
and the error correction term

— 1
E1o(x) = ﬂ_l/z(xz + 4712) lMsin[— tant (i> 4+ z],

(1.6)

2 2 4

In figure 1 we plot the error curve/?y (x) — [S1(x) + E1.0(x)] for the simple approxi-
mation (1.7).

As can be seen from this graph, the error is fairly small, even for this lowest order
member of the family of approximations (1.3). As we shall demonstrate later, much
more accurate approximations result if we increase the valwé afid K in (1.3). For
example, the magnitude of the error ¢roo, oo) is less than 8- 10°if N = 2
and K = 1, and less than.B- 10 when N = 8 andK = 7. The error curve
nY2y (x) — [Sg(x) + Eg7(x)] for the latter case is shown in figure 2.

As an implementation aid we will later provide a convenient contour plot for se-
lecting values ofv and K sufficient for (1.3) to achieve a specified number of decimal
digits of accuracy ovef—oo, 00).
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Figure 1. Error curver /2y (x) — [S1(x) + E1,0(x)] for approximation (1.3)N = 1, K = 0.
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Figure 2. Error curver/2y (x) — [Sg(x) + Eg 7(x)] for approximation (1.3)N =8, K =7.

This paper is organized as follows. Sections 2 and 3 outline the mathematical
derivation of the central approximation scheme specified by equations (1.3)—(1.6). Sec-
tion 4 is devoted to the application of approximation (1.3) and presents a method for
selecting appropriate values dfand K for computingz /%y (x) to a specified number
of decimal digits of accuracy. Finally, section 5 gives some concluding remarks and
observations.
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2. Anintegral form for theremainder

To develop a family of analytical approximations for the Randles—Sevcik function
we employ as our principal mathematical tool the integral representation

2y (x) = / 112 cschmsin(xt - %) dr, (2.1)
0

whose technical derivation is outlined in the appendix to this paper. Equation (2.1) is the
basis for all of the following analytical work.
We begin with the hyperbolic cosecant identity

N
cschrr =2 e @D 4 @72V ™ cschyrt (2.2)
k=1

that derives from the geometric series with remainder term, generated from the defining
exponential form of csch¢. Substituting the right-hand side of (2.2) into equation (2.1),
we find with the aid of a table of Fourier-sine and cosine transforms [9] that

N
1/2 _ 12 2 34 g(3 i 2
T x(x)=m ; (x + b,,) SII’](Zan + 4) + Ry (x), (2.3)

where the angle,, = tan*(x/b,) and the remainder
Ry(x) = / 1Y/2e72N7! cschyrt sin (xt + %) dr. (2.4)
0

A straight-forward, but tedious calculation shows that the summation in (2.3) is equal to
the Oldham partial surfiy (x) defined by (1.4), and, consequently, that

72y (x) = Sy(x) + Ry (x). (2.5)

Equation (2.5) shows that if we only sum the filsterms in Oldham’s series (1.2), then
we commit a truncation error whose magnitudeRs (x)|. Using (2.4), (2.5) and the
basic inequality cscht < (¢)~* we obtain the uniform upper bound

oo
‘nl/ZX(x) - SN(X)l - ‘RN(X)l < / tfl/ze*ZNﬂt d[
0

=7"r2N) Y2, —oo <x < .

This upper bound explicitly shows that the partial sums of (1.2) do not by themselves
provide a practical method for computing the Randles—Sevcik function, since to guaran-
tee an absolute errer< 1, we must choos®& > 2717272 > 1, e.g., fore = 0.001

this givesN > 50,661.

The central idea in deriving a practical approximation to the Randles—Sevcik func-
tion from the decomposition (2.5) depends on the fact that we can accurately estimate
the integral in equation (2.4) for the remaind®y (x). This is done in the next section
and is the key to obtaining the family of approximations (1.3).
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3. Estimating theremainder

To estimate the remaindé&y (x) in (2.5) we first observe that the integrand in (2.4)
is bounded in magnitude by the function

—27t
1—e27

with fy(1) — oo ast — 07 and fy(1) ~ 2e @Y7 |n particular, f1(1) ~ 0.16-

1073, f»(1) ~ 0.30-10°% and f3(1) ~ 0.56- 10~°. Consequently, a& increases the
major contributing portion of the integrand in (2.4) occurs on the intervalrO< 1. On

this latter interval it is known that the hyperbolic cosecant admits a series expansion [8]
that we express in the form

fn(t) = /te"?"" cschrt = Zﬁe(2N+1>”f[1 4 } ~ 2\/fe~@N+Dmt

cschrt = Cx(t) + Y aun® %7 0< ] <1, (3.1)
k=K+1
where the integek > 0,
_1\ Bax
=2(1-2%1Y) =
and the partial sum
K 1 1
Cr(t) = %121 _ = —o. 0 33 2K-1,2K-1 (39
k(1) ;akﬂ — &7t 350" +agm (3.2)
Substituting (3.1) into (2.4) yields the identity
Ry(x) = En g (x) + dn i (x), (3.3)
or in view of (2.5), the representation
72x(x) = Sn(x) + En x (x) + 8y.x (%), (3.4)
where
S k(%) :/ tl/2672N”’[CSCh7'[l‘ — Cg (t)] Sin<xt + %) dr, (3.5
0
Ey.x(x) =/ 1Y2e7 2N O (1) sin(m + %) dr
0
K 00 T
= aknz"l/ kY 2g=2Nmt Sil’l(xt + Z) dr. (3.6)
n=0 0

Using [9] we find that

> 2%—1/2 ~2N7t o T _ [(2k+1/2) i 1‘ T
/0 t e Sln(xt+4>dt— (x2+4N2n2)k+1/4sm 2k-|—2 0N+4 ,
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where as in section 19y = tan[x/(2Nm)]. If this latter integral is substituted
into (3.6) we obtain the form for the error correction tefiy ,(x) previously sum-
marized in the introduction by equations (1.5)—(1.6).

We conclude this section by noting that if the te$m (x) is neglected in (3.4),
then we obtain the two-parameter family of approximations (1.3). It follows that the
accuracy of (1.3) depends on the magnitudé,of (x) as detailed below.

4. Selectingthe accuracy control parameters N and K

In this section we present a method for selecting values for the intdgers 1
and K > 0 so that the basic approximation (1.3) enjaysdecimal place accuracy on
(—00, 00):

|7 2x (%) = [Sv(x) + En x (0)]] = |8y (¥)| 107”7, —00 < x < o0.

By (3.5) we have

o
|8y, x ()| </ t/2e 2N |cschrt — Ci (1)| dr. (4.1)
0
Using (3.1) it can be verified that
leschet — Cx ()] < lagaln®6 T2+ 1> 0.

Substituting the right-hand side of this inequality into the integrand in (4.1) and evaluat-
ing the resulting integral yields the upper bound

|7T1/2X(X) - [SN(X) + EN,K(X)” S Myk, —00<x <00, (4.2)

where

V2 T(2k +5/2)
Myx = |aK+1|? N2K+5/24K 73/2°

Using the well-known relationship
|Bon|l _ 20(2n)
@n)!  (2n)>

in the definition ofa, following (3.1), we may write the above expression Mf; x in
the form

I'(2k +5/2)¢(2k + 2)(1 — 272K-1
N2K+5/202K +3/2572K+7/2

My g = 4.3)

In view of the uniform bound (4.2), we can obtaindecimal digits of accuracy in
the approximation (1.3) foroo < x < oo if we choose the integer parameté¥s> 1
andK > 0 so that

In figure 3 we plot the contour curves (4.4) for= 3,4, ..., 16.
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Figure 3.—log;goMy .k = D for D = 3,4, ..., 16 (top left to right curves).
Using figure 3 it is easy to select among several possible Naiks on the contour
of level D, to insure that (1.3) achievd3d decimal places of accuracy over the domain
of %2y (x). For example, ifD = 4 then the second curve from the top left in figure 3
shows that the choice¥ = 2, K = 1 are appropriate, whereaslif = 15 the choices
N = 8, K = 7 are satisfactory. Notice that the predicted maximum absolute error of
10~%%in the latter case is consistent with the actual absolute er2&r-A0~1° shown in

figure 2.

5. Concluding remarks

The family of approximations defined by (1.3)—(1.6) give a useful method for com-
putingz /2y (x) on the domairi—oo, co). Table 1 gives closed forms for the coefficients
d; required in (1.5) for the cases whdéh < 7 in (1.3). The contour curves in figure 3
facilitate the selection of the accuracy parameférand K to insure that (1.3) achieves

D decimal digits of accuracy.

Appendix

One method for deriving the paramount integral representation (2.1) is based on
the theory of special functions. Our starting point is Joncquiére’s function [10]

o0 Zn
F(Z’S) = s
n

n=1
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and Joncquiére’s relation

is 1‘ _ (27.[)‘9 is/2 _ IO&)
F(z,s)+€ F(Z,s>— F(s)é {(1 s 5 )

In view of the Reinmuth series representation (1.1) we see that the Randles—Sevcik func-
tion can be expressed in terms of Joncquiére’s function through

a2y (x) = —F(—e", —%)

This later connection and Joncquiére’s relation implies that
: V2 31 ix
7oy (o) —im oy (=) = Z—e '”/4;(— = - —).

Taking the real part of both sides of this last equation and employing the integral
representation for the generalized zeta (Hurwitz) function given in [10] to represent
£(3/2,1/2 — (ix)/(27)), we obtain the form forr /2y (x) given by (2.1).
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